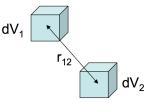

Expanding the BAO science case

Royal Society University Research Fellow

- General introduction to galaxy redshift surveys & BAO
- Presting inflation with primordial features (Beutler et al. to be submitted this week)
- Neutrinos in the phase of the BAO (Nature Physics, 15, 465, 2019)

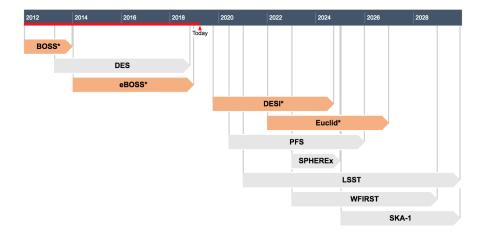
What is a galaxy redshift survey?



- Measure the position of galaxies (redshift + RA, DEC).
- The CMB tells us a lot about the initial conditions for today's distribution of matter.
- How the initial density fluctuations in the CMB evolved from redshift $z \sim 1100$ to today depends on Ω_m , Ω_Λ , H_0 etc.

From a point distribution to a power spectrum

$$\delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \overline{\rho}}{\overline{\rho}}$$


Two-point function:

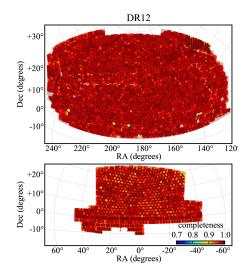
$$\begin{aligned} & \overset{\text{homogeneity}}{\xi(\mathbf{r})} = \langle \delta(\mathbf{x} + \mathbf{r}) \delta(\mathbf{x}) \rangle \begin{cases} \overset{\text{isotropy}}{=} & \xi(r) \\ \underset{\text{anisotropy}}{\text{anisotropy}} & \\ \\ \end{array} & \xi_{\ell}(r) = \int_{-1}^{1} d\mu \, \xi(r, \mu) \mathcal{L}_{\ell}(\mu) \end{aligned}$$

...and in Fourier-space:

$$P_{\ell}(k) = 4\pi (-i)^{\ell} \int r^2 dr \xi_{\ell}(r) j_{\ell}(kr)$$

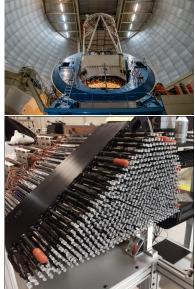
Why should you care?

The BOSS galaxy survey


- Third version of the Sloan Digital Sky Survey (SDSS-III)
- Spectroscopic survey optimized for the measurement of Baryon Acoustic Oscillations (BAO)
- The galaxy sample includes 1 100 000 galaxy redshifts in the range 0.2 < z < 0.75
- The effective volume is $\sim 6 \, \text{Gpc}^3$
- 1000 fibres/redshifts per pointing

The BOSS galaxy survey

- The final data release (DR12) covers about 10 000 deg²
- The survey is divided in a north galactic patch (NGC) and a south galactic patch (SGC).



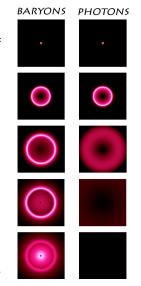
The DESI galaxy survey

- Mayall 4m telescope at Kitt Peak, Arisona
- 5000 fibres/pointing
- Will observe 3 types of galaxies (LRGs/ELGs/QSOs) + BGS
- 30 40 million galaxies in total
- z < 1.8 with galaxies and z < 3.5 with Ly-α forrest

The ESA Euclid mission

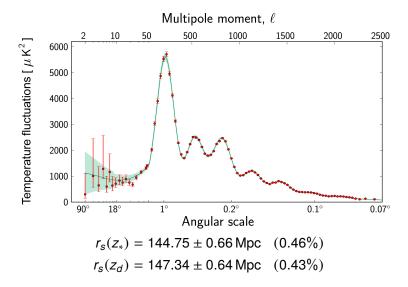
- Launch scheduled for summer 2022
 → L2 point
- Space-based weak lensing + gal. clustering survey over 15 000 deg²
- 30 million emission line galaxies over the redshift range 0.7 to 2.0
- Slitless spectroscopy (grism)

What are Baryon Acoustic Oscillations?

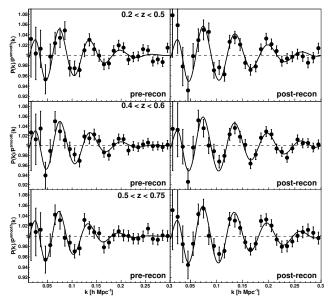

 For the first 380 000 years the evolution eq. of baryon and photon perturbations can be written as

$$\ddot{\delta}_{b\gamma} - c_s^2 \nabla^2 \delta_{b\gamma} = \nabla^2 \Phi$$

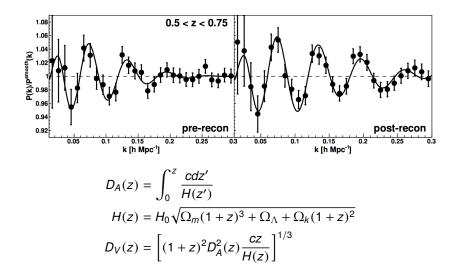
with the plane wave solution


$$\delta_{b\gamma} = A\cos(kr_s + \phi)$$

- Preferred distance scale between galaxies as a relic of sound waves in the early Universe.
- This signal is present at low redshift and detectable in ξ(r)/P(k) on very large scales.



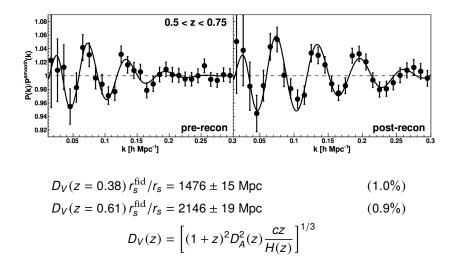
credit: Martin White


What are Baryon Acoustic Oscillations?

Planck collaboration

Beutler et al. (2017)

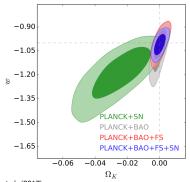
Beutler et al. (2017)


 Start with linear P(k) and separate the broadband shape, Psm(k), and the BAO feature O^{lin}(k). Include a damping of the BAO feature:

$$P^{\text{sm,lin}}(k) = P^{\text{sm}}(k) \left[1 + (O^{\text{lin}}(k/\alpha) - 1)e^{-k^2 \sum_{nl}^2/2} \right]$$

Add broadband nuisance terms

$$A(k) = a_1 k + a_2 + \frac{a_3}{k} + \frac{a_4}{k^2} + \frac{a_5}{k^3}$$
$$P^{\text{fit}}(k) = B^2 P^{\text{sm,lin}}(k/\alpha) + A(k)$$


• Marginalize to get $\mathcal{L}(\alpha)$.

Beutler et al. (2017)

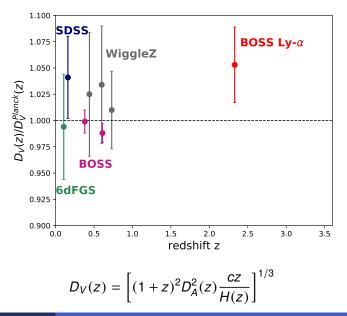
- The BAO signal is located on very large scales and can be captured (mostly) with a linear model.
- In BOSS we used an agnostic broadband marginalisation using a set of polynomial terms and density field reconstruction to boost the signal.
- Due to BAO we now know the distance to z = 0.38 and z = 0.61 with $\sim 1\%$ uncertainty... better than our knowledge of H_0 .

- The BAO signal is located on very large scales and can be captured (mostly) with a linear model.
- In BOSS we used an agnostic broadband marginalisation using a set of polynomial terms and density field reconstruction to boost the signal.
- Due to BAO we now know the distance to z = 0.38 and z = 0.61 with $\sim 1\%$ uncertainty... better than our knowledge of H_0 .

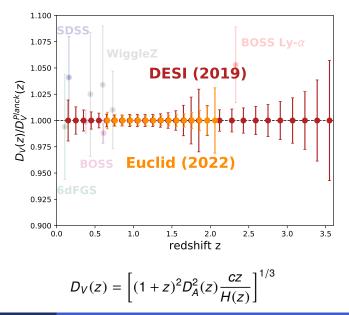
Planck+SN:

 $\Omega_k = 0.025 \pm 0.012$

 $w = -1.01 \pm 0.11$

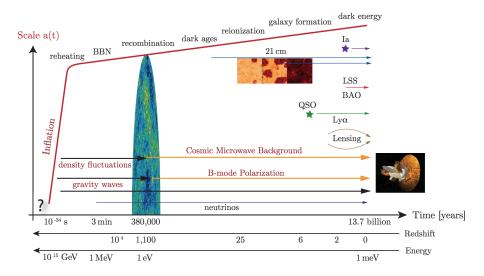

Planck+SN+BAO:

 $\Omega_k = 0.0003 \pm 0.0027$

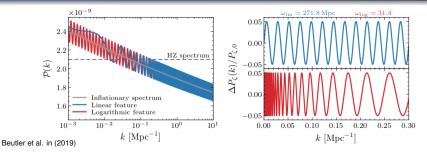

$$w = -1.05 \pm 0.08$$

Alam et al. (2017)

Looking into the (near) future



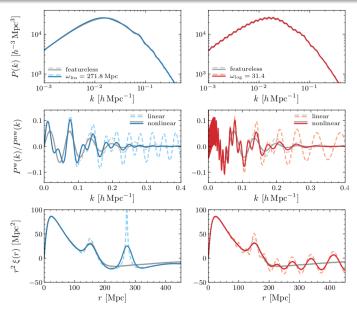
Looking into the (near) future


- General introduction to galaxy redshift surveys & BAO
- Testing inflation with primordial features (Beutler et al. to be submitted this week)
- Neutrinos in the phase of the BAO (Nature Physics, 15, 465, 2019)

Inflation in one plot

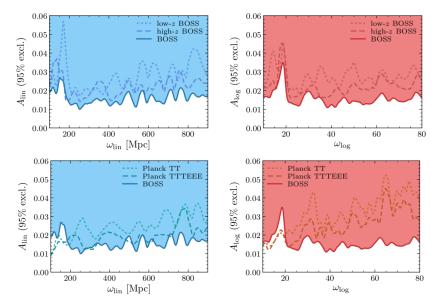
Baumann (2009)

Testing inflation through primordial features

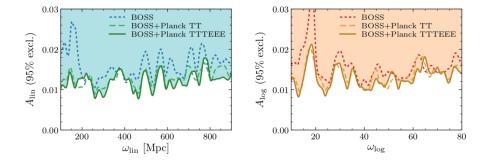

• Feature(s) in the inflationary potential can introduce features in the primordial power spectrum, which might still be detectable today.

• Sharp features can lead to linear oscillations, while periodic features lead to log-oscillations $(P_m(k) = k^4 [T(k)D(z)]^2 P_{\zeta}(k))$.

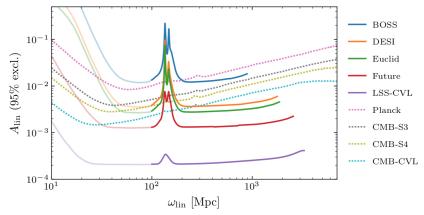
$$\frac{\Delta P_{\zeta}}{P_{\zeta}} = \begin{cases} A^{\cos} \cos \left[\omega_{\log} \log \left(\frac{k}{0.05} \right) \right] + A^{\sin} \sin \left[\omega_{\log} \log \left(\frac{k}{0.05} \right) \right], \\ A^{\cos} \cos \left[\omega_{\ln} k \right] + A^{\sin} \sin \left[\omega_{\ln} k \right] \end{cases}$$


• Such features are predicted by many popular inflationary models like monodromy inflation, brane inflation, axion inflation etc.

Testing inflation through primordial features


Beutler et al. in (2019)

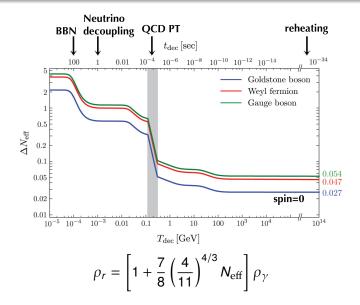
Feature constraints from BOSS DR12 and Planck


Beutler et al. (2019)

Combined feature constraints

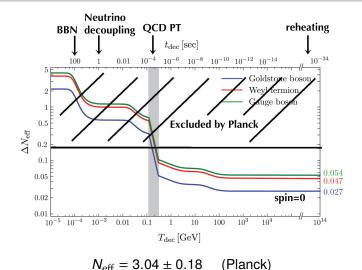
Beutler et al. (2019)

Forecasts for primordial feature constraints

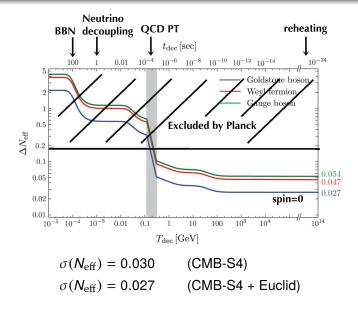


Beutler et al. in (2019)

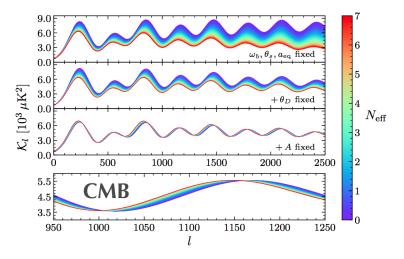
- LSS is more powerful than the CMB on small frequencies, while the CMB can access much higher frequencies
- DESI is going to provide constraints which cannot be accessed even by a CVL CMB experiment


- General introduction to galaxy redshift surveys & BAO
- Presting inflation with primordial features (Beutler et al. to be submitted this week)
- Neutrinos in the phase of the BAO (Nature Physics, 15, 465, 2019)

Motivation: Neutrinos in the phase of the BAO

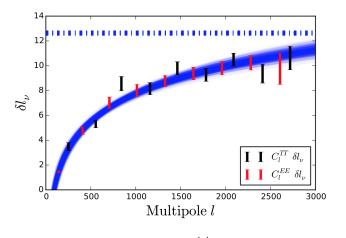

Baumann et al. (2017)

Motivation: Neutrinos in the phase of the BAO

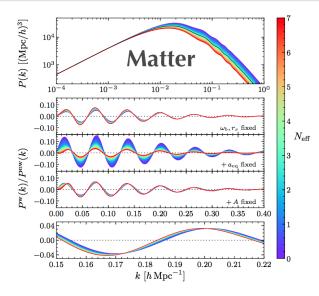

Baumann et al. (2017)

Motivation: Neutrinos in the phase of the BAO

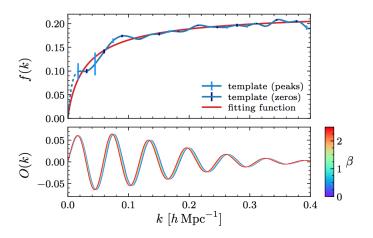
Baumann et al. (2017)


Current constraints are dominated by the damping of the power spectrum (degenerate with helium fraction).

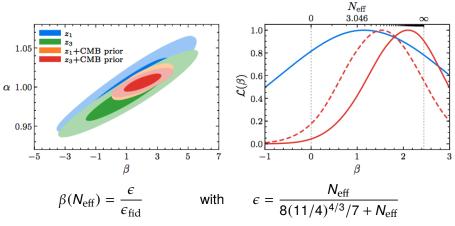
Baumann et al. (2017)


Phase shift detection in the CMB

The Phase shift has recently been detected in the temperature and polarisation CMB spectrum.


 $N_{\rm eff} = 2.8^{+1.1}_{-0.4}$

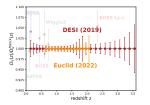
Follin et al. (2015)


Baumann et al. (2017)

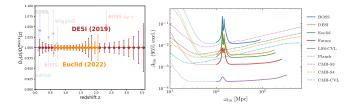
$$O(k) = O_{\rm lin}(k/\alpha + (\beta - 1)f(k)/r_s^{\rm fid})e^{-k^2\sigma_{\rm nl}^2/2}$$

Baumann et al. (2019)

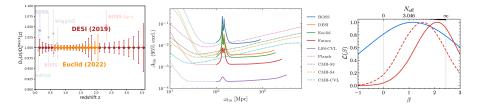
$$O(k) = O_{\rm lin}(k/\alpha + (\beta - 1)f(k)/r_s^{\rm fid})e^{-k^2\sigma_{\rm nl}^2/2}$$


 \rightarrow Proof of principle!

Baumann et al. (2019)

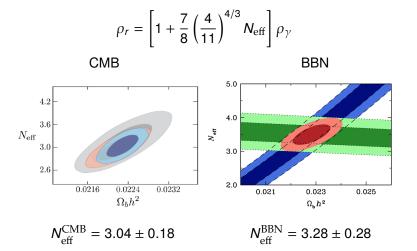

Baumann et al. (2019)

Summary

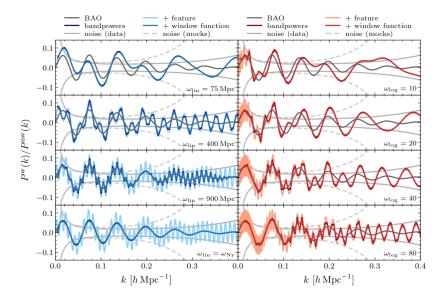

The next generation of galaxy redshift surveys is just around the corner
 → with BAO as a key science case

Summary

- The next generation of galaxy redshift surveys is just around the corner → with BAO as a key science case
- The BAO analysis pipeline is perfectly suited to extract primordial features to test inflation
- Constraints on primordial features from LSS are already better than Planck for a large frequency range


Summary

- The next generation of galaxy redshift surveys is just around the corner → with BAO as a key science case
- The BAO analysis pipeline is perfectly suited to extract primordial features to test inflation
- Constraints on primordial features from LSS are already better than Planck for a large frequency range
- The phase of the BAO carries information on $N_{\rm eff}$ just as in the CMB \rightarrow first (low significance) detection in BOSS


Current constraints on $N_{\rm eff}$

Relic neutrinos make up 41% of the radiation density

Planck (2015), Cooke et al. (2015)

Impact of the window function for features search

Beutler et al. (2019)