Primordial Features from Linear to Nonlinear Scales

Royal Society University Research Fellow

Primordial Features from Linear to Nonlinear Scales Florian Beutler, Matteo Biagetti, Daniel Green, Anze Slosar and Benjamin Wallisch ArXiv: 1906.08758

Inflation in one plot

Baumann (2009)

Testing inflation through primordial features

$$P_{\zeta,0}(k) = \frac{2\pi^2}{k^3} \mathcal{P}_{\zeta,0}(k) = \frac{2\pi^2 A_s}{k^3} \left(\frac{k}{k_*}\right)^{n_s - 1}$$

Testing inflation through primordial features

$$\frac{\Delta P_{\zeta}(k)}{P_{\zeta,0}(k)} = A_{\rm lin} \sin\left(\omega_{\rm lin}k + \phi_{\rm lin}\right)$$

[Sharp Features] Starobinsky 1992 Adams, Cresswell & Easther 1997

• • •

Testing inflation through primordial features

Logarithmic features

$$\frac{\Delta P_{\zeta}(k)}{P_{\zeta,0}(k)} = A_{\log} \sin\left(\omega_{\log}\log(k/k_*) + \phi_{\log}\right)$$

[Resonant features] Chen, Easther & Lim (2008) Silverstein & Westphal (2008) Flauger, McAllister, Pajer & Westphal (2010)

. . .

Non-linear gravitational evolution

Carlson et al. in (2009)

Baryon Acoustic Oscillations in BOSS DR12

Beutler et al. (2017)

 Start with linear P(k) and separate the broadband shape, Psm(k), and the BAO feature O^{lin}(k). Include a damping of the BAO feature:

$$P^{\text{sm,lin}}(k) = P^{\text{sm}}(k) \left[1 + (O^{\text{lin}}(k/\alpha) - 1)e^{-k^2 \sum_{nl}^2/2} \right]$$

Add broadband nuisance terms

$$A(k) = a_1 k + a_2 + \frac{a_3}{k} + \frac{a_4}{k^2} + \frac{a_5}{k^3}$$
$$P^{\text{fit}}(k) = B^2 P^{\text{sm,lin}}(k/\alpha) + A(k)$$

• Marginalize to get $\mathcal{L}(\alpha)$.

Feature damping

Linear Feature

Logarithmic Feature

- Damping factor of linear features equal to BAO damping for $\omega_{\rm lin} \lesssim 75 \, \rm Mpc$
- Damping factor of log features approx. equal to BAO damping for $\omega_{\log} \lesssim 10$

$$P(k) = P^{\mathrm{nw}}(k) + e^{-k^2 \sum_{\mathrm{nl}}^2 2} \left[P^{w}_{\mathrm{BAO}}(k) + P^{w}_{\mathrm{lin,log}}(k) + P^{w}_{\mathrm{BAO}}(k) \delta P^{\mathrm{lin,log}}_{\zeta}(k) \right]$$

Fourier-space vs. configuration space

Linear Feature

Logarithmic Feature

Feature constraints from BOSS DR12 and Planck

Feature constraints from BOSS DR12 and Planck

Feature constraints from BOSS DR12 and Planck

Forecasts for primordial feature constraints

- LSS is more powerful than the CMB on small frequencies, while the CMB can access much higher frequencies
- DESI is going to provide constraints which cannot be accessed even by a CVL-CMB experiment

- Many well motivated inflationary models introduce features in the primordial power spectrum And we know how to detect features → BAO
- Constraints on primordial features from LSS are already better than Planck for a large frequency range
- Future LSS constraints from DESI and Euclid will push into a parameter space, which is even beyond a CVL-CMB experiment

- Many well motivated inflationary models introduce features in the primordial power spectrum
 And we know how to detect features → BAO
- Constraints on primordial features from LSS are already better than Planck for a large frequency range
- Future LSS constraints from DESI and Euclid will push into a parameter space, which is even beyond a CVL-CMB experiment

- Many well motivated inflationary models introduce features in the primordial power spectrum
 And we know how to detect features → BAO
- Constraints on primordial features from LSS are already better than Planck for a large frequency range
- Future LSS constraints from DESI and Euclid will push into a parameter space, which is even beyond a CVL-CMB experiment

Impact of the window function for features search

Transfer of power

