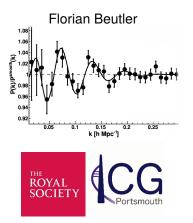
Exploring fundamental physics with galaxy redshift surveys

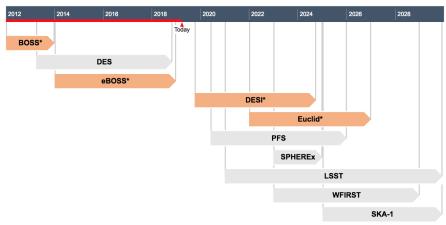


Royal Society University Research Fellow

Outline of the talk

- General introduction to galaxy redshift surveys
 - Baryon Acoustic Oscillations
- Neutrinos in the phase of the BAO
- Testing inflation with primordial non-Gaussianity and primordial oscillations

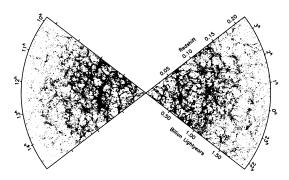
Why should you care?



DESI will start observing this year!

^{*}Collaboration Member

What is a galaxy redshift survey?

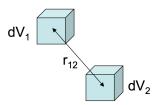


- Measure the position of galaxies (redshift + RA, DEC).
- The CMB tells us a lot about the initial conditions for today's distribution of matter.
- How the initial density fluctuations in the CMB evolved from redshift $z \sim 1100$ to today depends on Ω_m , Ω_Λ , H_0 etc.

From a point distribution to a power spectrum

Overdensity-field:

$$\delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \overline{\rho}}{\overline{\rho}}$$



Two-point function:

$$\xi(\mathbf{r}) \; = \; \langle \delta(\mathbf{x} + \mathbf{r}) \delta(\mathbf{x}) \rangle \left\{ \begin{matrix} \text{isotropy} \\ = \end{matrix} & \xi(r) \\ \text{anisotropy} \\ = \end{matrix} & \xi_{\ell}(r) = \int_{-1}^{1} d\mu \; \xi(r, \mu) \mathcal{L}_{\ell}(\mu) \right.$$

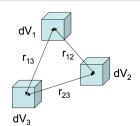
...and in Fourier-space:

$$P_{\ell}(k) = 4\pi (-i)^{\ell} \int r^2 dr \xi_{\ell}(r) j_{\ell}(kr)$$

From a point distribution to a bispectrum

Overdensity-field:

$$\delta(\mathbf{x}) = \frac{\rho(\mathbf{x}) - \overline{\rho}}{\overline{\rho}}$$



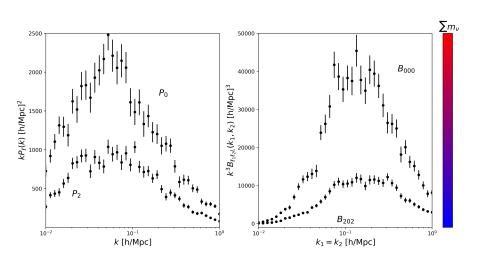
Three-point function:

$$\xi(\mathbf{r}_1,\mathbf{r}_2) \ = \ \langle \delta(\mathbf{x}+\mathbf{r}_1)\delta(\mathbf{x}+\mathbf{r}_2)\delta(\mathbf{x}) \rangle \left\{ \begin{array}{ll} \mathrm{isotropy} \\ = \end{array} \right. \begin{array}{ll} \xi_L(r_1,r_2) \\ \mathrm{anisotropy} \\ \to \end{array} \right. \\ \xi_{\ell_1\ell_2L}(r_1,r_2)$$

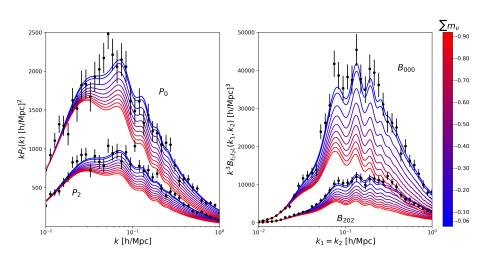
...and in Fourier-space:

$$B_{\ell_1\ell_2L}(k_1,k_2) = (4\pi)^2 (-i)^{\ell_1+\ell_2} \int r_1^2 dr_1 \int r_2^2 dr_2 \xi_{\ell_1\ell_2L}(r_1,r_2) j_{\ell_1}(k_1r_1) j_{\ell_2}(k_2r_2)$$

Extracting cosmological information



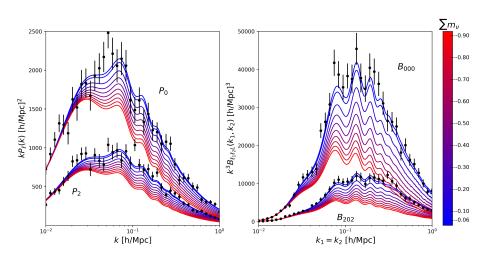
Extracting cosmological information



Outline of the talk

- General introduction to galaxy redshift surveys
 - Baryon Acoustic Oscillations
- Neutrinos in the phase of the BAO
- Testing inflation with primordial non-Gaussianity and primordial oscillations

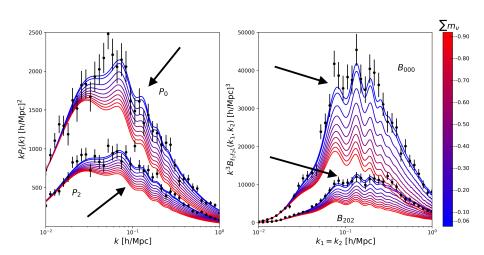
Extracting cosmological information



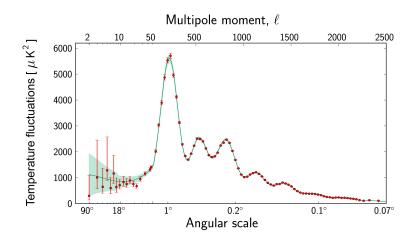
Florian Beutler 25 March, 2019

10

Extracting cosmological information



What are Baryon Acoustic Oscillations?



What are Baryon Acoustic Oscillations?

 For the first 380 000 years the evolution eq. of baryon and photon perturbations can be written as

$$\ddot{\delta}_{b\gamma} - c_s^2 \nabla^2 \delta_{b\gamma} = \nabla^2 \Phi$$

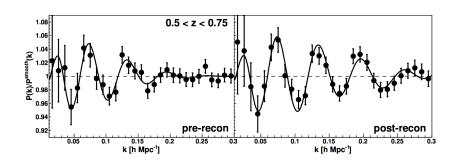
with the plane wave solution

$$\delta_{b\gamma} = A\cos(kr_s + \phi)$$

- Preferred distance scale between galaxies as a relic of sound waves in the early Universe.
- This signal is present at low redshift and detectable in ξ(r)/P(k) on very large scales.

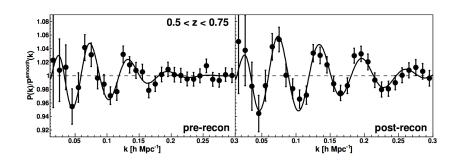
BARYONS PHOTONS

credit: Martin White



$$\begin{split} D_A(z) &= \int_0^z \frac{cdz'}{H(z')} \\ H(z) &= H_0 \sqrt{\Omega_m (1+z)^3 + \Omega_\Lambda + \Omega_k (1+z)^2} \end{split}$$

Beutler et al. (2017)



$$D_V(z = 0.38) r_s^{\text{fid}} / r_s = 1476 \pm 15 \text{ Mpc}$$
 (1.0%)

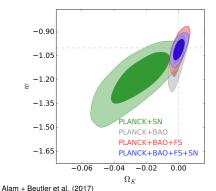
$$D_V(z = 0.61) r_s^{\text{fid}} / r_s = 2146 \pm 19 \text{ Mpc}$$
 (0.9%)

$$D_V(z) = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

Beutler et al. (2017)

- The BAO signal is located on very large scales and can be captured (mostly) with a linear model.
- In BOSS we used an agnostic broadband marginalisation using a set of polynomial terms and density field reconstruction to boost the signal.
- Due to BAO we now know the distance to z = 0.38 and z = 0.61 with $\sim 1\%$ uncertainty... better than our knowledge of H_0 .

- The BAO signal is located on very large scales and can be captured (mostly) with a linear model.
- In BOSS we used an agnostic broadband marginalisation using a set of polynomial terms and density field reconstruction to boost the signal.
- Due to BAO we now know the distance to z = 0.38 and z = 0.61 with $\sim 1\%$ uncertainty... better than our knowledge of H_0 .



Planck+SN:

$$\Omega_k = 0.025 \pm 0.012$$

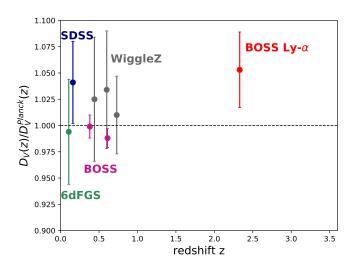
 $w = -1.01 \pm 0.11$

Planck+SN+BAO:

$$\Omega_k = 0.0003 \pm 0.0027$$

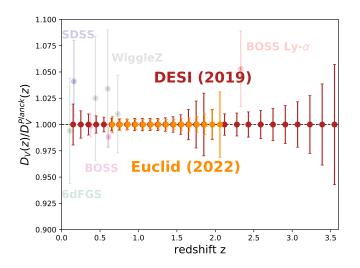
 $w = -1.05 \pm 0.08$

Looking into the (near) future



$$D_V(z) = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

Looking into the (near) future



$$D_V(z) = \left[(1+z)^2 D_A^2(z) \frac{cz}{H(z)} \right]^{1/3}$$

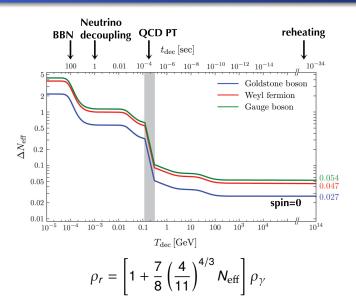
Florian Beutler 25 March, 2019

18

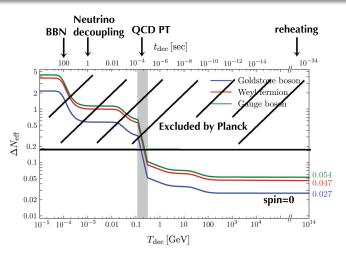
Outline of the talk

- General introduction to galaxy redshift surveys
 - Baryon Acoustic Oscillations
- Neutrinos in the phase of the BAO
- Testing inflation with primordial non-Gaussianity and primordial oscillations

Motivation: Neutrinos in the phase of the BAO

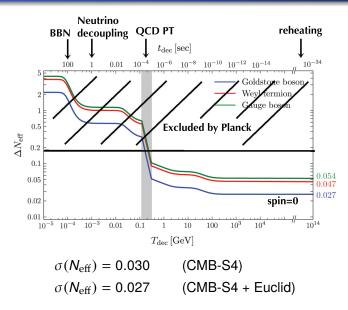


Motivation: Neutrinos in the phase of the BAO



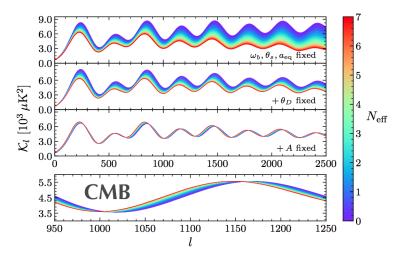
$$N_{\rm eff} = 3.04 \pm 0.18$$
 (Planck)

Motivation: Neutrinos in the phase of the BAO



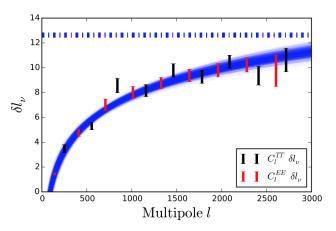
Neutrinos in the CMB Spectrum

Current constraints are dominated by the damping of the power spectrum (degenerate with helium fraction).



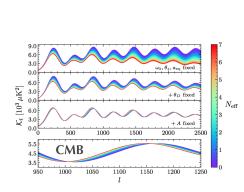
Phase shift detection in the CMB

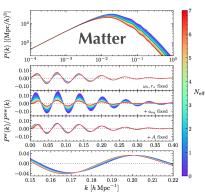
The Phase shift has recently been detected in the temperature and polarisation CMB spectrum.



$$N_{\rm eff} = 2.8^{+1.1}_{-0.4}$$

Neutrinos in the BAO Spectrum

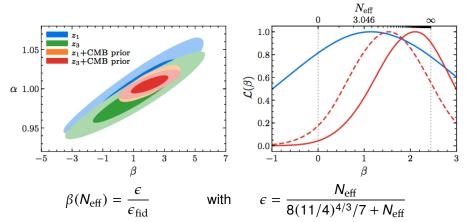




25

Neutrinos in the BAO Spectrum

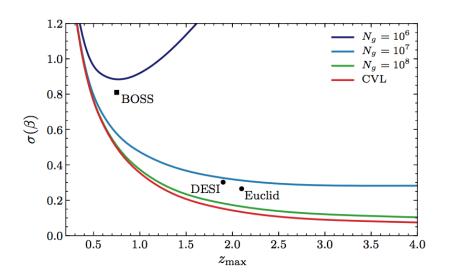
$$O(k) = O_{\text{lin}}(k/\alpha + (\beta - 1)f(k)/r_s^{\text{fid}})e^{-k^2\sigma_{\text{nl}}^2/2}$$



 \rightarrow This is a proof of principle for extracting information on light relics from galaxy clustering data.

Baumann + Beutler et al. (2019)

Neutrinos in the BAO Spectrum



Baumann + Beutler et al. (2019)

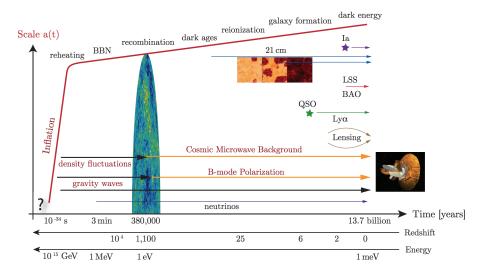
Outline of the talk

- General introduction to galaxy redshift surveys
 - Baryon Acoustic Oscillations
- Neutrinos in the phase of the BAO
- Testing inflation with primordial non-Gaussianity and primordial oscillations

Florian Beutler 25 March, 2019

28

Inflation in one plot

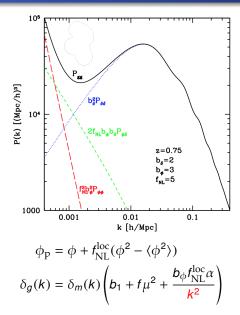


Baumann (2009)

Florian Beutler 25 March, 2019

29

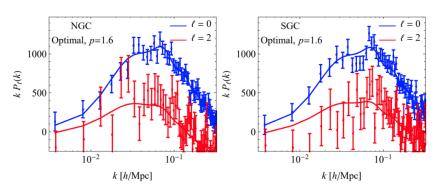
Testing inflation through primordial non-Gaussianity



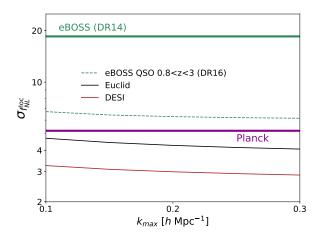
McDonald (2008)

Primordial non-Gaussianity with LSS (preliminary)

- The CMB bispectrum yields $f_{\rm NL}^{\rm loc} = 0.8 \pm 5.2$ (Planck col.)
- eBOSS DR14: ~ 150 000 Quasars at 0.8 < z < 2.2
- eBOSS provides the currently best LSS constraint $f_{\rm NL}^{\rm loc}=-8^{+18}_{-19}$ using 1/3 of the final eBOSS sky coverage and excluding z>2.2

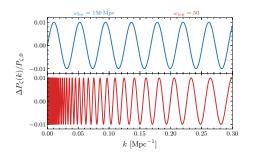


Primordial non-Gaussianity with LSS



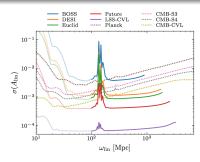
- \bullet No bispectrum information included yet! \to $f_{\rm NL}^{\rm equil}$, $f_{\rm NL}^{\rm ortho}$
- SPHEREx is now funded $\rightarrow \sigma_{f_{
 m NI.}^{
 m loc}} <$ 1 in 2025

Testing inflation through primordial features



- Feature(s) in the inflationary potential can introduce features in the primordial power spectrum, which might still be detectable today.
- Sharp features can lead to linear oscillations, while periodic features lead to log-oscillations.
- Such features are predicted by many popular inflationary models like monodromy inflation, brane inflation, axion inflation etc.

Testing inflation through primordial features



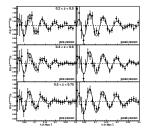
Here we use a model-independent approach based on

$$\frac{\Delta P_{\zeta}}{P_{\zeta}} = \begin{cases} A^{\cos} \cos \left[\omega_{\log} \log \left(\frac{k}{0.05} \right) \right] + A^{\sin} \sin \left[\omega_{\log} \log \left(\frac{k}{0.05} \right) \right], \\ A^{\cos} \cos \left[\omega_{\ln} k \right] + A^{\sin} \sin \left[\omega_{\ln} k \right] \end{cases}$$

- LSS is more powerful than the CMB on small frequencies, while the CMB can access much higher frequencies
- DESI is going to provide constraints which cannot be accessed even by a CVL CMB experiment

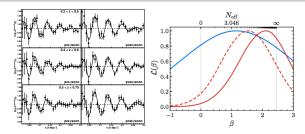
Beutler et al. in prep.

Summary



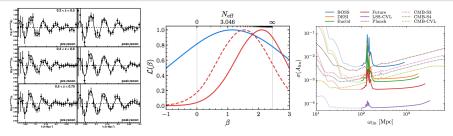
The next generation of galaxy surveys offers unprecedented cosmological constraints using BAO and DESI will start this year.

Summary



- The next generation of galaxy surveys offers unprecedented cosmological constraints using BAO and DESI will start this year.
- 2 The **phase of the BAO** carries information on $N_{\rm eff}$ just as in the CMB. We have a **low significance detection in BOSS** and will be able to get $\sim 3-5\sigma$ detections in DESI and Euclid.
- First use of the BAO feature beyond its application as a standard ruler.

Summary



- The next generation of galaxy surveys offers unprecedented cosmological constraints using BAO and DESI will start this year.
- ② The **phase of the BAO** carries information on $N_{\rm eff}$ just as in the CMB. We have a **low significance detection in BOSS** and will be able to get $\sim 3-5\sigma$ detections in DESI and Euclid.
- First use of the BAO feature beyond its application as a standard ruler.
- USS can constrain inflationary models competitive with the CMB using both primordial non-Gaussianity and primordial features.
- Constraints on primordial features at high frequencies are already dominated by LSS data.

Further linear corrections

At horizon scales further linear (GR) corrections start to matter:

$$\delta_g(k) = \delta_m(k) \left(b_1 + f\mu^2\right) - \int_0^r dr' \frac{r - r'}{rr'} \Delta_{\Omega}(\Phi + \Psi)$$

$$+ \left(1 - \frac{\dot{\mathcal{H}}}{\mathcal{H}^2} - \frac{2}{r\mathcal{H}}\right) v_{\parallel} + \frac{1}{\mathcal{H}} \dot{v}_{\parallel} + \frac{1}{\mathcal{H}} \partial_r \Psi$$

$$+ \Psi - 2\Phi + \frac{1}{\mathcal{H}} \dot{\Phi} + \frac{2}{r} \int_0^r dr' (\Phi + \Psi)$$

$$+ \left(\frac{\dot{\mathcal{H}}}{\mathcal{H}^2} + \frac{2}{r\mathcal{H}}\right) \left[\Psi + \int_0^r dr' (\dot{\Phi} + \dot{\Psi})\right]$$
Potential

Yoo et al. (2010), Bonvin & Durrer (2011), Challinor & Lewis (2011)

36

Fitting the BAO

• Start with linear P(k) and separate the broadband shape, $P^{sm}(k)$, and the BAO feature $O^{lin}(k)$. Include a damping of the BAO feature:

$$P^{\mathrm{sm,lin}}(k) = P^{\mathrm{sm}}(k) \left[1 + (O^{\mathrm{lin}}(k/\alpha) - 1)e^{-k^2 \sum_{\mathrm{nl}}^2/2} \right]$$

Add broadband nuisance terms

$$A(k) = a_1 k + a_2 + \frac{a_3}{k} + \frac{a_4}{k^2} + \frac{a_5}{k^3}$$

$$P^{\text{fit}}(k) = B^2 P^{\text{sm,lin}}(k/\alpha) + A(k)$$

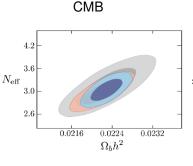
• Marginalize to get $\mathcal{L}(\alpha)$.

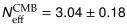
37

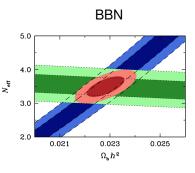
Current constraints on $N_{\rm eff}$

Relic neutrinos make up 41% of the radiation density

$$\rho_r = \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\text{eff}}\right] \rho_{\gamma}$$







$$N_{\rm eff}^{\rm BBN} = 3.28 \pm 0.28$$

New decomposition formalism for the bispectrum

The estimator is based on the spherical harmonics expansion

$$\begin{split} \widehat{B}_{\ell_1\ell_2L}(k_1,k_2) &= H_{\ell_1\ell_2L} \sum_{m_1m_2M} \left(\begin{smallmatrix} \ell_1 & \ell_2 & L \\ m_1 & m_2 & M \end{smallmatrix} \right) \\ &\times \frac{N_{\ell_1\ell_2L}}{I} \int \frac{d^2\hat{k}_1}{4\pi} y_{\ell_1}^{m_1*}(\hat{k}_1) \int \frac{d^2\hat{k}_2}{4\pi} y_{\ell_2}^{m_2*}(\hat{k}_2) \\ &\times \int \frac{d^3k_3}{(2\pi)^3} (2\pi)^3 \delta_{\rm D} \left(\vec{k}_1 + \vec{k}_2 + \vec{k}_3 \right) \\ &\times \delta n(\vec{k}_1) \, \delta n(\vec{k}_2) \, \delta n_I^M(\vec{k}_3) \end{split}$$

where y_{I}^{M*} -weighted density fluctuation

$$\begin{split} \delta n_L^M(\vec{x}) &\equiv y_L^{M*}(\hat{x}) \, \delta n(\vec{x}) \\ \delta n_L^M(\vec{k}) &= \int d^3x \mathrm{e}^{-\mathrm{i}\vec{k}\cdot\vec{x}} \delta n_L^M(\vec{x}) \end{split}$$

and $y_{\ell}^{m} = \sqrt{4\pi/(2\ell+1)} Y_{\ell}^{m}$.

Why using this formalism

- This decomposition compresses the data into 2D quantities $B_{\ell_1\ell_2L}(k_1,k_2)$ rather than 3D quantities like other decompositions $B_{\ell}^m(k_1,k_2,k_3)$. This reduces the size of the connected covariance matrix.
- This decomposition allows for a self consistent inclusion of the survey window function.
- The RSD information is clearly separated into the *L* multipoles.
- The complexity of our estimator is $O((2\ell_1 + 1)N_b^2 N \log N)$.
- Only some multipoles are non-zero: (1) $\ell_1 > \ell_2$ (2) L = even (3) $|\ell_1 \ell_2| \le L \le |\ell_1 + \ell_2|$ and (4) $\ell_1 + \ell_2 + L = \text{ even}$.