Primordial Features from Linear to Nonlinear Scales

Florian Beutler

In collaboration with Matteo Biagetti, Daniel Green, Anze Slosar & Benjamin Wallisch

[arXiv:1906.08758]

Inflation in one plot

Baumann (2009)

Florian Beutler

Testing inflation through primordial features

$$\mathsf{P}_{\zeta,0}(k) = \frac{2\pi^2}{k^3} \mathscr{P}_{\zeta,0}(k) = \frac{2\pi^2 A_s}{k^3} \left(\frac{k}{k_*}\right)^{n_s - 1}$$

Testing inflation through primordial features

$$\frac{\Delta P_{\zeta}(k)}{P_{\zeta,0}(k)} = A_{\rm lin} \sin\left(\omega_{\rm lin}k + \phi_{\rm lin}\right)$$

[Sharp Features] Starobinsky (1992) Adams, Cresswell & Easther (1997)

Florian Beutler

Testing inflation through primordial features

Logarithmic features

$$\frac{\Delta P_{\zeta}(k)}{P_{\zeta,0}(k)} = A_{\log} \sin\left(\omega_{\log}\log(k/k_*) + \phi_{\log}\right)$$

[Resonant features] Chen, Easther & Lim (2008) Silverstein & Westphal (2008) Flauger, McAllister, Pajer & Westphal (2010)

. . .

Non-linear gravitational evolution

Crocce & Scoccimarro (2008)

$$P_g(k) = b_1^2 \left[e^{-k^2 \sum_{nl}^2/2} P_{\text{lin}}(k) + P_{\text{MC}}(k) \right]$$
$$P_{\text{MC}}(k) \simeq 2 \int F_2^2(\mathbf{k} - \mathbf{q}, \mathbf{q}) P_{\text{lin}}(|\mathbf{k} - \mathbf{q}|) P_{\text{lin}}(q) d^3q$$

Heavens & Matarrese (1998), McDonald (2006), Smith et al. (2007), Carlson et al. (2009) Blas et al. (2016)

. .

Density-field reconstruction

Schmittfull, FB et al. (2016)

Eisenstein et al. (2007), Padmanabhan et al. (2009) Padmanabhan et al. (2012) . . .

Florian Beutler

Fitting the BAO

Model for the BAO

$$P(k) = P^{\text{nw}}(k) + e^{-k^2 \Sigma_{\text{nl}}^2/2} P_{\text{BAO}}^{\text{w}}(k/\alpha)$$

Add broadband nuisance terms

$$A(k) = a_1 k + a_2 + \frac{a_3}{k} + \frac{a_4}{k^2} + \frac{a_5}{k^3}$$
$$P^{\text{fit}}(k) = \frac{B^2}{(1 + (k\Sigma_{\text{FOG}})^2/2)^2} P(k) + A(k)$$

• Marginalize to get $\mathcal{L}(\alpha)$.

Modelling the BAO

Ding, Vlah, FB et al. (2018)

 \rightarrow 2 simulations with the same phase but based on $P_{\rm lin}$ and $P_{\rm lin}^{\rm nw}$

 \rightarrow Allows to measure the BAO (almost) without sample variance

Modelling the BAO

Ding, Vlah, FB et al. (2018)

 $\alpha = \alpha_{\parallel}^{1/3} \alpha_{\perp}^{2/3}$

Modelling the BAO

Ding, Vlah, FB et al. (2018)

 $\alpha = \alpha_{\parallel}^{1/3} \alpha_{\perp}^{2/3}$

Baryon Acoustic Oscillations in BOSS DR12

FB et al. (2017)

- \rightarrow 2 independent 8 σ detections
- \rightarrow 1% distance constrains (1.5% in $D_A(z)$ and \sim 2.5% in H(z))

Florian Beutler

Feature damping

Linear Feature

• Damping factor of linear features equal to BAO damping for $\omega_{\rm lin} \gtrsim 75 \, \rm Mpc$

Logarithmic Feature

• Damping factor of log features approx. equal to BAO damping for $\omega_{\log} \gtrsim 10$

$$P(k) = P^{\mathrm{nw}}(k) + e^{-k^2 \sum_{\mathrm{nl}}^2 / 2} \left[P_{\mathrm{BAO}}^{\mathsf{w}}(k/\alpha) \right]$$

Feature damping

Linear Feature

Logarithmic Feature

- Damping factor of linear features equal to BAO damping for ω_{lin} ≥ 75 Mpc
- Damping factor of log features approx. equal to BAO damping for $\omega_{\log} \gtrsim 10$

$$P(k) = P^{\mathrm{nw}}(k) + e^{-k^2 \sum_{\mathrm{nl}}^2 / 2} \left[P^{\mathrm{w}}_{\mathrm{BAO}}(k/\alpha) + P^{\mathrm{w}}_{\mathrm{lin,log}}(k) + P^{\mathrm{w}}_{\mathrm{BAO}}(k/\alpha) \delta P^{\mathrm{lin,log}}_{\zeta}(k) \right]$$

Feature constraints from BOSS DR12 and Planck

Feature constraints from BOSS DR12 and Planck

Feature constraints from BOSS DR12 and Planck

Forecasts for primordial feature constraints

 \rightarrow LSS dominates on small frequencies, while the CMB can access higher frequencies

 \rightarrow DESI/Euclid are going to beat even CVL-CMB experiments

- Many well motivated inflationary models introduce features in the primordial power spectrum
 And we know how to detect features → BAO
- Constraints on primordial features from LSS are already better than Planck for a large frequency range
- Future LSS constraints from DESI and Euclid will push into a parameter space, which is even beyond a CVL-CMB experiment

- Many well motivated inflationary models introduce features in the primordial power spectrum
 And we know how to detect features → BAO
- Constraints on primordial features from LSS are already better than Planck for a large frequency range
- Future LSS constraints from DESI and Euclid will push into a parameter space, which is even beyond a CVL-CMB experiment

- Many well motivated inflationary models introduce features in the primordial power spectrum
 And we know how to detect features → BAO
- Constraints on primordial features from LSS are already better than Planck for a large frequency range
- Future LSS constraints from DESI and Euclid will push into a parameter space, which is even beyond a CVL-CMB experiment

Fourier-space vs. configuration space

Linear Feature

Logarithmic Feature

S/N after Density-field reconstruction

$$(S/N)^{2} = \sum_{k_{1},k_{2} \le k_{\max}} C^{-1}(k_{1},k_{2})P_{m}(k_{1})P_{m}(k_{2})$$

Dependence on fiducial cosmology

$$\alpha = \alpha_{\parallel}^{1/3} \alpha_{\perp}^{2/3}$$

Impact of the window function for features search

Transfer of power

